Phases of cardiac cycle, heart sounds.

Prof. Zaporozhets T.Viber +380972420098

Recap from Tuesday

Reading an ECG

The clinician looks for:

- 1. Voltage Calibration very large QRS may indicate blockage
- 2. Heart Rhythm every beat has a P, followed by QRS
- 3. Heart Rate beats / minute
- 4. Intervals

```
PR Normal = 0.12-0.2 sec.Decrease = pre-excitation<br/>Increase = 1^{st} degree AV blockQRS Normal \leq 0.10 sec.Increase = Bundle block, toxic drugs...QT Normal \leq 0.44 sec.Decrease= tachycardia<br/>Increase = hypocalcium, MI, toxic drugs...
```

An ECG CANNOT tell about: Blood flow, Valve function, Contraction

Normal ECG Patterns Normal rhythm, Normal P-R interval

A-V Node Blocks

Normal or slowed rhythm, Variable PR interval

Symptoms

-usually asymptomatic -heart rate can be slow

Treatment

If severe bradycardia occurs, then medications to improve conduction, or a pacemaker may be used.

Bundle Branch block Enlarged or prolonged QRS rhythm, Abnormal T wave

bundle branch block - A _ A _ A _ A

Symptoms

-usually asymptomatic -heart rate in normal range

Treatment

A ventricular pacemaker may be used if abnormal rhythms or bradycardia occur.

Atrial Fibrillation

Rapid oscillating baseline, no defined P wave, Irregular QRS rhythm

atrial fibrillation my many my my my

Symptoms

-irregular heart rate
-weakness,lightheadedness
-shortness of breath
-can lead to other complications

Treatments

-cardioversion (restore rhythm)
-slowing heart rate (drugs)
-clot prevention (drugs)
-surgical intervention

AFib (atrial fibrillation)

y

Ventricular arrhythmias

Irregular, absent, or exaggerated QRS rhythms

Ventricular tachycardia

Exaggerated, rapid QRS rhythm

Symptoms

-unsustained <30 sec palpations weakness -sustained: MEDICAL EMERGENCY palpations dizziness fainting

Treatments

-cardioversion

Ventricular fibrillation

Exaggerated, rapid QRS rhythm

ventricular fibrillation -

Symptoms -loss of consciousness

Treatment:

-cardioversion

The cardiac cycle

- A. Introduction
- B. Illustration and analysis of 5 phases of the cardiac cycle
- C. Heart sounds and Abnormalities
- D. The ECG and the cardiac cycle
- E. Cardiac cycle chart

What is the "Cardiac Cycle"?

The organized, recurring sequence of atrial and ventricular depolarization, contraction, and blood flow

- **Diastole:** Ventricular relaxation and blood filling
- Systole: Ventricular contraction and blood ejection

Time (Diastole) > Time (Systole)

T_C = cardiac cycle length (seconds)

 $T_C = T_{syst} + T_{dias}$

 $T_{\rm C} = 60/HR$ (if HR=Heart Rate)

If HR = 80 bpm, then T = 0.75 sec

And if $T_{syst} = 0.25$ sec, then $T_{dias} = 0.5$ sec Electrical activity triggers a coordinated wave of contraction to pump blood through the heart.

General Concepts of the Cardiac Cycle a.

- The events of the ECG precede contraction of the myocardium.
- b. Contraction and relaxation of the myocardium cause large <u>changes in pressure</u>.
- c. Pressure changes drive <u>fluid flow</u> and the <u>opening</u> and <u>closing</u> of the heart valves.

B. Phases of the Cardiac Cycle

Diastole = Ventricular Relaxation (filling)
Systole = Ventricular Contraction (ejection)

Fig. 44

From Figure 29-1, p 466; Review of Medical Physiology 13th Edition, WF Ganong © 1987 Lange Medical Publications

Diastolic phases:

1A. Diastole - Ventricular Filling

Ventricles are relaxed:

A-V valves OPEN

What happens to blood flow?

INTO Ventricles

1B. Atrial systole

A-V valves remain OPEN

What happens to blood flow?

INTO Ventricles

From Figure 29-1, p 466 ; Review of Medical Physiology 13th Edition, WF Ganong © 1987 Lange Medical Publications

Systolic phases:

2. Isovolumetric Ventricular Contraction 3. Ventricular ejection Ventricular Myocardium Contracts

Massive Ventricular Contraction

 $P_{ventricles} > P_{aorta}$

Aortic and Pulmonary Valves OPEN

What happens to blood flow?

INTO Aorta and Pulmonary A.

Fig. 45 c,d

From Figure 29-1, p 466; Review of Medical Physiology 13th Edition, WF Ganong © 1987 Lange Medical Publications

Diastolic phases:

4. <u>Isovolumetric</u> Ventricular Relaxation Repolarization of ventricular myocardium

$$\mathsf{P}_{\mathsf{vent.}}\downarrow\downarrow$$

when P_{vent} = P_{aorta and pulmonary art.}, Aortic and Pulmonary Valves CLOSE [2nd heart sound]

What happens to blood flow?

NO BLOOD FLOW

From Figure 29-1, p 466 ; Review of Medical Physiology 13th Edition, WF Ganong © 1987 Lange Medical Publications

D. The ECG and the Cardiac Cycle

From Figure 29-1, p 466 ; Review of Medical Physiology 13th Edition, WF Ganong © 1987 Lange Medical Publications

Heart sounds and the ECG

W Normal Heart Sounds: Frontiers in Bioscience

http://www.bioscience.org/atlases/heart/ekg/normalh.htm

From Figure 4-15, p 93; Cardiovascular Physiology Third Edition, RM Berne and MN Levv © 1977 CV Mosby

C. Heart Sounds

Heart sounds correspond to the opening and closing of the valves

()):

Fig 46. From Figure 29-1, p 466 ; Review of Medical Physiology 13th Edition, WF Ganong © 1987 Lange Medical Publications Fig 47. From Figure 4-15, p 93; Cardiovascular Physiology Third Edition, RM Berne and MN Levy © 1977 CV Mosby

C. Heart Sounds

Abnormal Heart Sounds

Stenosis: Partial block when open Insufficient: Partial leak when closed

http://www.bioscience.org/atlases

Normal Inspiration: S2 splits slightly Wide S2 split: Pulmonary valve stenosis Paradoxical splitting: S2 splits in Expiration, Aortic stenosis

Murmurs: May reflect regurgitation due to insufficient valve

Events of the Cardiac Cycle (Left Heart)

Modified from Figure 8-4, p 83 ; Human Physiology and Mechanisms of Disease Fifth Edition, AC Guyton © 1992 WB Saunders Co..

Events of the Cardiac Cycle (Left Heart)

Review of Pulmonary vs. Systemic Comparison

The Pulmonary Circulation (Right Heart) follows the same sequence, except that the PRESSURE VALUES are LOWER!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Pressures in right ventricle/pulmonary artery

- 1 = Ventricular filling
- 2 = Isovolumetric ventricular contraction
- 3 = Ventricular ejection
- 4 = Isovolumetric ventricular relaxation

Figure 12-21 from Vander., 2006

End Diastolic Volume (EDV) and End Systolic Volume (ESV)

DEFINITIONS (Fill in values for an average adult male): **Stroke Volume** = volume of blood expelled from each ventricle during contraction = EDV – ESV (e.g.130ml -50 ml = 70 mls)

Ejection Fraction = fraction of blood volume that is expelled during contraction = <u>Stroke volume</u> (e.g. 70ml /130ml =~ 54%) EDV

Modified from Figure 8-4, p 83 ; Human Physiology and Mechanisms of Disease Fifth Edition, AC Guyton © 1992 WB Saunders Co..

Cardiac Cycle- Key Points:

- 1. The cardiac cycle is the recurring sequence of depolarization, contraction and blood flow that results in the pumping of oxygenated blood to the cells and tissues of the body.
- 2. Blood always flows in response to pressure differences.
- 3. Systole (ventricular contraction) and Diastole (ventricular relaxation) are the two major phases of the cardiac cycle.
- Isovolumetric phases occur when the valves of the heart are closed. Closing of the valves causes the 1st and 2nd heart sounds.
- 5. Pressures in the pulmonary circulation are lower than those in the systemic circulation.

"Enrichment Material for Cardiac Cycle"

1) Echocardiograms

2) Valve defects

<u>Echo</u>cardiography: high frequency (ultrasonic) waves are reflected where there are differences in acoustic impedence

http://info.med.yale.edu/intmed/cardio/imaging/contents.html

Transesophageal Echocardiography

2- dimensional Echocardiography

OT=outflow track

Doppler Imaging reveals direction, velocity and turbulence of blood flow

Movie of echocardiogram of cardiac cycle in normal adult male

"Enrichment Material for Cardiac Cycle"1) Echocardiograms2) Valve defects

Aortic regurgitation

congenital aging disease

Aortic stenosis

aging disease

Heart sounds

- 1 A-V valves close
- 2 Aortic and pulmonary valves close

"Enrichment Material for Cardiac Cycle"1) Echocardiograms2) Valve defects

Mitral stenosis

disease (Rheumatic fever) congenital blood clots or tumors

Accentuated first sound

Opening snap

Normal Heart Sounds

"Enrichment Material for Cardiac Cycle"

1) Echocardiograms **2) Valve defects**

Mitral valve prolapse

click-murmur syndrome **(**) causes usually unknown

The regurgitation of blood increases the likelihood of acquiring bacterial endocarditis. Prophylactic antibiotics are recommended prior to any surgical or dental procedure.

http://www.bioscience.org/atlases/heart/sound/sound.htm

Cardiac Output

- A. Definition of Cardiac Output
- B. Heart rate: Autonomic nervous system regulation
- C. Factors contributing to Stroke Volume
 - 1. Force of Contraction
 - a. End-diastolic fiber length
 - b. Contractility
 - c. Muscle fiber structure
 - 2. Afterload

A. Cardiac Output = Volume of Blood pumped by each ventricle per minute

$CO = HR \times SV$

Normal values for an adult male:

HR- heart rate (beats per minute) = \sim 70 bpm at rest SV- Stroke volume (ml per beat) = EDV - ESV = \sim 70 ml at rest

CO at rest = ~ 5 L / minute CO during strenuous exercise = 20-35 L / minute B. Heart Rate is determined ONLY by the <u>frequency of pacemaker firing</u> at the <u>SA node</u>.

Pacemaker Potential and Heart Rate

Figure 15-10, p 165; Textbook of Medical Physiology , Eighth Edition, AC Guyton © 1991 WB Saunders co.

Effect of <u>Sympathetic</u> and <u>Parasympathetic</u> Stimulation on Pacemaker Potential and Heart Rate

Fig. 52

Figure 15-10, p 165; Textbook of Medical Physiology, Eighth Edition, AC Guyton © 1991 WB Saunders co.

How do epinephrine and norepinephrine increase heart rate at the SA node?

 β 1 receptor activation – faster depolarization

- Increases P_{Na+(F)}
- Increases P_{Ca2+}

How does acetylcholine decrease heart rate at the SA node?

M₂ receptor activation
decreases P_{Na+(F)}
decreases membrane
potential by increasing P_{K+}

$CO = HR \times SV$

Copied from FIGURE 12-23, Vander, Sherman and Luciano's Human Physiology

C. Stroke Volume

Stroke volume = volume of blood expelled from each ventricle during contraction = EDV - ESV

(e.g. 120 ml -50 ml =70 mls)

Fig. 54 Modified from Figure 8-4, p 83 ; Human Physiology and Mechanisms of Disease Fifth Edition, AC Guyton © 1992 WB Saunders Co..

1. Changing the Force of Contraction a.Ventricular Function Curve – Frank Starling Mechanism

Stroke volume increases as EDV increases.

If ventricular muscle is stretched more, it will eject blood with more force.

Factors that Influence Ventricular End-Diastolic Volume

- Total Blood Volume Blood loss, transfusion, kidney function
- <u>Atrial filling</u> <u>Atrial fibrillation, loss of compliance</u>
- Ventricular compliance Aging, tachycardia (rapid contractions)
- Venous tone -
 - 1. Body position **Gravity**
 - 2. Intrathoracic pressure / respiration Inspiration, expiration
 - 3. Skeletal muscle pump Increase venous wall pressure

Changing the Force of Contraction Sympathetic activation increases Contractility

Contractility = Force of contraction for a given sarcomere length

Sympathetic activation increases contractility of the myocardium

MECHANISMS: Modulation of Excitation-Contraction Coupling cAMP regulation of intracellular calcium release and sequestration

1. Changing the Force of Contraction c. Exercise can alter Muscle Fiber Structure

ex.) Changes can be induced by Long-Term Aerobic Training \uparrow actin / myosin and \uparrow cardiac muscle fiber size

2. Changes in flow by pressure or resistance "Afterload" of ventricular pressure

Clipart © Microsoft, Inc.

Aortic and pulmonary pressures

Increased aortic and pulmonary pressure can cause decreased ejection volume (F α $\Delta P)$

Ventricular ejection

Cardiac Output: Key Points

Cardiac Output = Volume of Blood pumped by each ventricle per minute.

1. $CO = HR \times SV$.

2. HR is controlled by Sympathetic and Parasympathetic activation of SA node.

- 3. SV is controlled by three factors related to force:
 - a. End-diastolic volume (stretch)
 - b. Contractility (strength)
 - c. Actin/myosin content (size)

and one factor related to pressure and resistance:d. Afterload (ex.: increased aortic pressure)

See Flow Diagram Figure 12-28 Vander p. 411

Summary:

Cardiac Output = Volume of Blood pumped by each ventricle per minute.

1. $CO = HR \times SV$.

2. HR is controlled by Sympathetic and Parasympathetic activation of SA node.

3. SV is controlled by three factors related to force:

- a. End-diastolic volume (stretch)-
- b. Contractility (strength) β_1 receptors
- c. Actin/myosin content (size)

and one factor related to pressure:

d. Afterload (ex.: increased aortic pressure)

- Blood volumeVentricular compliance
- Atrial contraction
- •Venous tone

How is Cardiac Output Measured?

1. Indirectly via Fick's principle

 O_2 consumed = O_2 removed x Flow rate

 $Flow = \underline{total \ O_2 consumed} \\ [O_2]_{art} - [O_2]_{ven}$

2. Dye or thermo (heat) dilution

Figure 11-1, p 236; Cardiovascular Physiology Third Edition © 1997 CV Mosby

Actual Past Dental Board Questions:

- 1. Both systemic and pulmonary circulations have the same:
 - A. pulse pressure.
 - B. total capacitance.
 - C. diastolic pressure.
 - D. resistance.
 - E. flow rate.
- 2. Increased parasympathetic activity results in
 - A. decreased salivary secretion.
 - B. increased cardiac contractility
 - C. decreased gastric motility and tone.
 - D. increased bonchiolar smooth muscle contraction.
- 3. Which of the following is MOST likely to result from increased vagal activity?

1. E

2. D

3. D

- A. Increased heart rate
- B. Increased stroke volume
- C. Increased cardiac output
- D. Decreased cardiac oxygen consumption
- E. Decreased transit time through the AV node

Exam will cover Lectures, Handouts and Text Assignments

Text: Vander, Sherman, & Luciano's HUMAN PHYSIOLOGY, 10th Edition

Date	Lecture topic	Text Pages
9/13	- Autonomic nervous system	199-204
	- Cardiovascular system: organization	387-395
9/15 1	st Midterm Exam (Cell Physiology)	
9/20	- Functional requirements of the heart	395-399
	- Electrocardiogram	389-403
9/22	- The cardiac cycle	403-408
	- Cardiac output	408-414
10/13 2	2nd Midterm Exam (ANS and Cardiovascular)	

WebCT and Dent Website information:

Slides and Supplementary info: <u>http://www.dent.ohio-state.edu/Courses/physiology</u> Practice self-tests: <u>https://enigma.optometry.ohio-state.edu/</u>

Select: view my courses User ID: pcbcardio-dent password: pcbcardio PCB Cardiovascular; Course Materials; Course Content Self test. Note- Questions #1-16 of each test for Dr. Jakeman, #17-30 for Dr. Ward