Blood circulation and its regulation. The peculiarities of circulation and its regulation in maxillofacial region.

> Prof. Zaporozhets T.Viber +380972420098

The Heart

- Circulatory system
 - heart, blood vessels and blood
- Cardiovascular system

- heart, arteries, veins and capillaries;
 2 major divisions
- Pulmonary circuit right side of heart
 carries blood to lungs for gas exchange
- Systemic circuit left side of heart
 - supplies blood to all organs of the body

Cardiovascular System Circuit

Size, Shape and Position

- Located in mediastinum, between lungs
- Base broad superior portion of heart
- Apex inferior end, tilts to the left, tapers to point
- 3.5 in. wide at base,
 5 in. from base to apex and 2.5 in. anterior to posterior; weighs 10 oz

Heart Position

Pericardium

- Allows heart to beat without friction, room to expand and resists excessive expansion
- Parietal pericardium
 - outer, tough, fibrous layer of CT
 - inner, thin, smooth, moist serous layer
- Pericardial cavity
 - filled with pericardial fluid
- Visceral pericardium (a.k.a. epicardium of heart wall)
 - thin, smooth, moist serous layer covers heart surface

Heart Wall

- Epicardium (a.k.a. visceral pericardium)
 - serous membrane covers heart
- Myocardium
 - thick muscular layer
 - fibrous skeleton network of collagenous and elastic fibers
 - provides structural support
 - attachment for cardiac muscle
 - nonconductor important in coordinating contractile activity
- Endocardium
 - smooth inner lining

Heart Chambers

- 4 chambers
- Right and left atria
 - 2 superior, posterior chambers
 - receive blood returning to heart
- Right and left ventricles
 - 2 inferior chambers
 - pump blood into arteries

- Atrioventricular sulcus separates atria, ventricles
- Anterior and posterior sulci grooves separate ventricles (*next slide*)

Anterior Aspect

• Heart bisected in frontal plane, opened like a book

Heart Valves

- Ensure one-way blood flow
- Atrioventricular (AV) valves
 - right AV valve has 3 cusps (tricuspid valve)
 - left AV valve has 2 cusps (mitral, bicuspid valve) lamb
 - chordae tendineae cords connect AV valves to papillary muscles (on floor of ventricles)
- Semilunar valves control flow into great arteries
 - pulmonary: from right ventricle into pulmonary trunk
 - aortic: from left ventricle into aorta

Heart Valves

AV Valve Mechanics

- Ventricles relax, *pressure drops*, semilunar valves close, AV valves open, blood flows from atria to ventricles
- Ventricles contract, AV valves close (papillary m. contract and pull on chordae tendineae to prevent prolapse), *pressure rises*, semilunar valves open, blood flows into great vessels

Operation of Atrioventricular Valves

Atrioventricular valves open Atrioventricular valves closed

Operation of Semilunar Valves

Semilunar valves open

Semilunar valves closed

Structure of Cardiac Muscle

- Short, thick, branched cells, 50 to 100 μm long and 10 to 20 μm wide with one central nucleus
- ↓ Sarcoplasmic reticulum, large T tubules
 must admit more Ca²⁺ from ECF during excitation
- Intercalated discs, join myocytes end to end
 - interdigitating folds \uparrow surface area
 - mechanical junctions tightly join myocytes
 - fascia adherens: actin anchored to plasma membrane
 - desmosomes
 - electrical junctions gap junctions form channels allowing ions to flow directly into next cell

Structure of Cardiac Muscle Cell

Metabolism of Cardiac Muscle

- Aerobic respiration
- Rich in myoglobin and glycogen
- Large mitochondria
- Organic fuels: fatty acids, glucose, ketones
- Fatigue resistant

Cardiac Conduction System

- Myogenic heartbeat originates within heart
- Autorhythmic regular, spontaneous depolarization
- Conduction system
 - SA node: pacemaker, initiates heartbeat, sets heart rate
 - fibrous skeleton insulates atria from ventricles
 - AV node: electrical gateway to ventricles
 - AV bundle: pathway for signals from AV node
 - Right and left bundle branches: divisions of AV bundle that enter interventricular septum and descend to apex
 - Purkinje fibers: upward from apex spread throughout ventricular myocardium

Cardiac Conduction System

Right atrium — Atrioventricular

node

Sinoatrial node (pacemaker)

Atrioventricularbundle

Purkinje fibers

Left atrium

–Purkinje fibers

-Bundle branches

Cardiac Rhythm

- Systole = contraction; diastole = relaxation
- Sinus rhythm

- set by SA node, adult at rest is 70 to 80 bpm

- Ectopic foci region of spontaneous firing (not SA)
 - nodal rhythm set by AV node, 40 to 50 bpm
 - intrinsic ventricular rhythm 20 to 40 bpm
- Arrhythmia abnormal cardiac rhythm
 - heart block: failure of conduction system
 - bundle branch block
 - total heart block (damage to AV node)

Depolarization of SA Node

- SA node no stable resting membrane potential
- Pacemaker potential
 - gradual depolarization from -60 mV, slow influx of Na^+
- Action potential
 - occurs at threshold of -40 mV
 - depolarizing phase to 0 mV
 - fast Ca⁺² channels open, (Ca⁺² in)
 - repolarizing phase
 - K⁺ channels open, (K⁺ out)
 - *at -60 mV* K⁺ channels close, pacemaker potential starts over
- Each depolarization creates one heartbeat
 - SA node at rest fires at 0.8 sec, about 75 bpm

SA Node Potentials

Impulse Conduction to Myocardium

- SA node signal travels at 1 m/sec through atria
- AV node slows signal to 0.05 m/sec
 thin myocytes with fewer gap junctions
 - delays signal 100 msec, allows ventricles to fill
- AV bundle and purkinje fibers
 - speeds signal along at 4 *m/sec* to ventricles
- Papillary muscles get signal first, contraction stabilizes AV valves
- Ventricular systole begins at apex, progresses up

 spiral arrangement of myocytes twists ventricles
 slightly

Contraction of Myocardium

- Myocytes have stable resting potential of -90 mV
- Depolarization (very brief)
 - stimulus opens voltage regulated Na⁺ gates, (Na⁺ rushes in) membrane depolarizes rapidly
 - action potential peaks at +30 mV
 - Na⁺ gates close quickly
- Plateau 200 to 250 msec, sustains contraction
 - slow Ca⁺² channels open, Ca⁺² binds to fast Ca⁺²
 channels on SR, releases ↑Ca⁺² into cytosol: contraction
- Repolarization Ca⁺² channels close, K⁺ channels open, rapid K⁺ out returns to resting potential

Myocardial Contraction & Action Potential

- 1) Na⁺ gates open
- 2) Rapid depolarization
- 3) Na⁺ gates close
- 4) Ca⁺² channels open
- 5) Ca⁺² channels close K⁺ channels open

Electrical Activity of Myocardium

- 1) atrial depolarization begins
- 2) atrial depolarization
- complete (atria contracted)
- 3) ventricles begin to
- depolarize at apex;
- atria repolarize (atria relaxed)
- 4) ventricular
- depolarization complete (ventricles contracted)

- 5) ventricles begin to repolarize at apex
- 6) ventricular repolarization complete (ventricles relaxed)

Electrocardiogram (ECG)

• Composite of all action potentials of nodal and myocardial cells detected, amplified and recorded by electrodes on arms, legs and chest

The EKG is not only the oldest but, in fact, over 100 years after its introduction, continues as the most commonly used cardiovascular laboratory procedure.

The Nobel Prize in Physiology or Medicine 1924

"for his discovery of the mechanism of the electrocardiogram"

Willem Einthoven

the Netherlands

Leiden University Leiden, the Netherlands

b.1860 (in Semarang, Java, then Dutch East Indies) d.1927

Summary of Limb Leads

The Precordial (Chest) Leads

ECG

- P wave
 - SA node fires, atrial depolarization
 - atrial systole
- QRS complex
 - AV node fires, ventricular depolarization
 - ventricular systole
 - (atrial repolarization and diastole signal obscured)
- T wave
 - ventricular repolarization

Normal Electrocardiogram (ECG) 0.8 second +1 S-T P-Q segment segment Millivolts T wave P wave 0

Vector Analysis, cont'd

Vector Algebraic Analysis

Diagnostic Value of ECG

• Invaluable for diagnosing abnormalities in conduction pathways, MI, heart enlargement and electrolyte and hormone imbalances

Sinus rhythm

This image taken from the Textbook of Cardiovascular Medicine, 2nd Ed.

ECG analysis performance

1. Cardiac rhythm and conductivity analysis.

- <u>Heart contraction regularity asessment.</u>
 Interval R-R is usually measured between R denses apexes.
- Heart regular **sinus** rhythm is diagnosed when measured R-R intervals duration is equal or difference is $\pm 10\%$ from R-R average duration.
- <u>**2. Cardiac contractions number (heart contraction rate** <u>HCR) counting.</u> It is assessed at correct rhythm by formule:</u>

• HCR=60: (R-R)

- where:
- 60 is seconds number in 1 minute;
- R-R interval duration expressed in seconds.

3. Excitement source determining.

- Sinus rhythm is characterized by:
- positive P-denses in II standard lead and these P-denses come before every complex QRS;
- all P-denses constant equal shape in one and the same lead.

ECGs, Normal & Abnormal

Excitement source determining.

- *Atrial rhythms* (from atria inferior parts) are characterized by negative denses P
- in II and III and non-changed QRS complexes following after them.
- *Rhythms from AV-binding* are characterized by:
- P-dense absence this dense coincides to usual nonchanged QRS-dense or
 - negative P-denses located after usual non-changed QRS complexes.
- Ventricular (idio-ventricular) rhythmis characterized by:
 - slow ventricular rhythm (less than 40 beatings per 1 min);
 - presence of dilated and deformed QRS complexes;
 - absence of usual connection between ORS complex and

ECGs, Abnormal

Premature ventricular contraction

Extrasystole : note the inverted QRS complex, misshapen QRS and T and absence of a P wave preceding this contraction.

ECGs, Abnormal

4.Determining heart turningsround

• Heart turnings:

- round anterior-posterior axe;
- round longitudinal axe;
- round transversal axe.

Anterior-posterior axes

• Heart electrical axe position:

standard and augmented leads

- *normal position* when angle α is from +30° till +69°;
- v<u>ertical position</u> when angle α is from +70° till +90°;
- *horizontal position* when angle α is from 0° till +29°;
 - *a<u>xe inclination to the right</u>* when angle α is from +91° till ±180°;
 - *a<u>xe inclination to the left</u>* when angle α is from 0° till -90°.
- Normal, horizontal and vertical position of heart electrical axe (from 0° till +90°) can be resent both in healthy people

This image taken from the Textbook of Cardiovascular Medicine, 2nd Ed.

Heart turnings determining round

longitudinal axe

Thoracic leads / horizontal plane

- *ECG sign of heart turning round longitudinal axe clockwise* is the following: transitional zone (denses S and R equality) possible replacement to the left into
- V4-V5.
- *ECG sign of heart turning round longitudinal axe counter clockwise* the following: transitional zone possible replacement to the right in V2.

Cardiac Cycle

- One complete contraction and relaxation of all 4 chambers of the heart
- Atrial systole, Ventricle diastole
- Atrial diastole, Ventricle systole

• Quiescent period

Principles of Pressure and Flow

- Measurement: force (mmHg) required to stop flow
 - sphygmomanometer
- Change in volume creates a pressure gradient
- Opposing pressures
 - great vessels have positive blood pressure
 - ventricular pressure must rise above this pressure for blood to flow into great vessels

Heart Sounds

- Auscultation listening to sounds made by body
- First heart sound (S1), louder and longer "lubb", occurs with closure of AV valves
- Second heart sound (S2), softer and sharper "dupp" occurs with closure of semilunar valves
- S3 rarely heard in people < 30

Phases of Cardiac Cycle

- Quiescent period
 - all chambers relaxed
 - AV valves open
 - blood flowing into ventricles
- Atrial systole
 - SA node fires, atria depolarize
 - P wave appears on ECG
 - atria contract, force additional blood into ventricles
 - ventricles now contain end-diastolic volume (EDV) of about 130 ml of blood

Isovolumetric Contraction of Ventricles

- Atria repolarize and relax
- Ventricles depolarize
- QRS complex appears in ECG
- Ventricles contract
- Rising pressure closes AV valves heart sound S1 occurs
- No ejection of blood yet (no change in volume)

Ventricular Ejection

- Rising pressure opens semilunar valves
- Rapid ejection of blood
- Reduced ejection of blood (less pressure)
- Stroke volume: amount ejected, 70 ml at rest
- SV/EDV= ejection fraction, at rest ~ 54%, during vigorous exercise as high as 90%, diseased heart < 50%
- End-systolic volume: amount left in heart

Isovolumetric Relaxation of Ventricles

- T wave appears in ECG
- Ventricles repolarize and relax (begin to expand)
- Semilunar valves close (dicrotic notch of aortic press. curve) heart sound S2 occurs
- AV valves remain closed
- Ventricles expand but do not fill (no change in volume)

Ventricular Filling - 3 phases

- Diastasis sustained lower pressure, venous return
- Filling completed by atrial systole

• Heart sound S3 may occur

Major Events of Cardiac Cycle

- Quiescent period
- Ventricular filling
- Isovolumetric contraction
- Ventricular ejection
- Isovolumetric relaxation

Events of the Cardiac Cycle

- Phases of cardiac cycle:
- 1. Ventricular filling 1a. Rapid filling 1b. Diastasis
- 1c. Atrial systole 2. Isovolumetric contraction
- 3. Ventricular ejection 4. Isovolumetric relaxation

Rate of Cardiac Cycle

- Atrial systole, 0.1 sec
- Ventricular systole, 0.3 sec
- Quiescent period, 0.4 sec
- Total 0.8 sec, heart rate 75 bpm

Ventricular Volume Changes at Rest	
End-systolic volume (ESV)	60 ml
Passively added to ventricle	
during atrial diastole	+30 ml
Added by atrial systole	+40 ml
End-diastolic volume (EDV)	130 ml
Stroke volume (SV) ejected	
by ventricular systole	-70 ml
End-systolic volume (ESV)	60 ml
Both ventricles must eject same amount of blood	

Unbalanced Ventricular Output

1

- 1. Right ventricular output exceeds left ventricular output.
- 2. Pressure backs up.
- 3. Fluid accumulates in pulmonary tissue.

Unbalanced Ventricular Output

- 1. Left ventricular output exceeds right ventricular output.
- 2. Pressure backs up.
- 3. Fluid accumulates in systemic tissue.

Cardiac Output (CO)

- Amount ejected by each ventricle in 1 minute
- $\mathbf{CO} = \mathbf{HR} \times \mathbf{SV}$
- Resting values, CO = 75 beats/min x70 ml/beat = 5,250 ml/min, usually about 4 to 6L/min
- Vigorous exercise
 [^]CO to 21 L/min for fit person and up to 35 L/min for world class athlete
- Cardiac reserve: difference between a persons maximum and resting CO
 - $-\uparrow$ with fitness, \downarrow with disease

Heart Rate

- Measured from pulse
- Infants have HR of 120 beats per minute or more
- Young adult females avg. 72 80 bpm
- Young adult males avg. 64 to 72 bpm
- HR rises again in the elderly
- Tachycardia: persistent, resting adult HR > 100

 stress, anxiety, drugs, heart disease or ↑ body temp.
- Bradycardia: persistent, resting adult HR < 60
 common in sleep and endurance trained athletes (↑ SV)

Chronotropic Effects

- Positive chronotropic agents \uparrow HR and negative chronotropic agents \downarrow HR
- Cardiac center of medulla oblongata
 - an autonomic control center with 2 neuronal pools: a cardioacceleratory center (sympathetic), and a cardioinhibitory center (parasympathetic)

Sympathetic Nervous System

- Cardioacceleratory center
 - stimulates sympathetic cardiac accelerator nerves to SA node, AV node and myocardium
 - these nerves secrete norepinephrine, which binds to β -adrenergic receptors in the heart (+ chronotropic effect)
 - CO peaks at HR of 160 to 180 bpm
 - Sympathetic n.s. can \uparrow HR up to 230 bpm, (limited by refractory period of SA node), but SV and CO \downarrow (less filling time)

Parasympathetic Nervous System

- Cardioinhibitory center
 - stimulates vagus nerves
 - right vagus nerve SA node
 - left vagus nerve AV node
 - secrete ACH (acetylcholine), binds to muscarinic receptors
 - opens K⁺ channels in nodal cells, hyperpolarized, fire less frequently, HR slows down
 - vagal tone: background firing rate holds HR to sinus rhythm of 70 to 80 bpm
 - severed vagus nerves SA node fires at intrinsic rate-100bpm
 - maximum vagal stimulation \downarrow HR as low as 20 bpm

Inputs to Cardiac Center

- Higher brain centers affect HR
 - sensory and emotional stimuli rollercoaster,
 - cerebral cortex, limbic system, hypothalamus
- Proprioceptors
 - inform cardiac center about changes in activity, HR ↑
 before metabolic demands arise
- Baroreceptors
 - pressure sensors in aorta and internal carotid arteries send continual stream of signals to cardiac center
 - if pressure drops, signal rate drops, cardiac center \uparrow HR
 - if pressure rises, signal rate rises, cardiac center \downarrow HR

Inputs to Cardiac Center 2

- Chemoreceptors
 - sensitive to blood pH, CO₂ and oxygen
 - aortic arch, carotid arteries and medulla oblongata
 - primarily respiratory control, may influence HR
 - $-\uparrow$ CO₂ (hypercapnia) causes \uparrow H⁺ levels, may create acidosis (pH < 7.35)

Chronotropic Chemicals

- Neurotransmitters with cAMP as 2 messenger
 - norepinephrine and epinephrine (catecholamines) are potent cardiac stimulants
- Drugs
 - caffeine inhibits cAMP breakdown
 - nicotine stimulates catecholamine secretion
- Hormones
 - TH ↑ adrenergic receptors in heart, ↑ sensitivity to sympathetic stimulation, ↑ HR
- Electrolytes K has greatest chronotropic effects

 ↑ K myocardium less excitable, HR slow and irregular
 ↓ K cells hyperpolarized, requires ↑ stimulation

Stroke Volume

- Governed by three factors:
 - preload, contractility and afterload
- \uparrow preload or contractility \uparrow SV
- \uparrow afterload \downarrow SV

Preload

- Amount of tension in ventricular myocardium before it contracts
- ↑ preload causes ↑ contraction strength

 exercise ↑ venous return, stretches myocardium
 (*↑ preload*), myocytes generate more tension during contraction, ↑ CO matches ↑ venous return
- Frank-Starling law of heart $SV \propto EDV$
 - ventricles eject as much blood as they receive; more they are stretched (\uparrow preload) the harder they contract

Contractility

- Contraction force for a given preload
- Tension caused by factors that adjust myocyte's responsiveness to stimulation
 - factors that \uparrow contractility are positive inotropic agents
 - hypercalcemia, catecholamines, glucagon, digitalis
 - factors that \downarrow contractility are negative inotropic agents
 - hyperkalemia (K⁺), hypocalcemia, hypoxia, hypercapnia

Afterload

- Pressure in arteries above semilunar valves opposes opening of valves
- \uparrow afterload \downarrow SV
 - any impedance in arterial circulation \uparrow afterload
- Continuous ↑ in afterload (lung disease, atherosclerosis, etc.) causes hypertrophy of myocardium, may lead it to weaken and fail

Exercise and Cardiac Output

- Effect of proprioceptors
 - HR ↑ at beginning of exercise due to signals from joints, muscles
- Effect of venous return
 - muscular activity \uparrow venous return causes \uparrow SV
- \uparrow HR and \uparrow SV cause \uparrow CO
- Effect of ventricular hypertrophy
 - caused by sustained program of exercise
 - \uparrow SV allows heart to beat more slowly at rest, 40-60bpm
 - $-\uparrow$ cardiac reserve, can tolerate more exertion

Coronary Atherosclerosis

