Physiology of respiration. Significance of oral cavity in respiration

> Prof. Zaporozhets T.Viber +38097242 0098

Function of the Respiratory System Oversees gas exchanges (oxygen and carbor dioxide) between the blood and external environment

- Exchange of gasses takes place within the lungs in the alveoli(only site of gas exchange, other structures passageways
- Passageways to the lungs purify, warm, and humidify the incoming air
- Shares responsibility with cardiovascular system

Organs of the Respiratory system

- Nose
- Pharynx
- Larynx
- Trachea
- Bronchi
- Lungs alveoli

Upper Respiratory Tract

Anatomy of the Nasal Cavity

- Olfactory receptors are located in the mucosa on the superior surface
- The rest of the cavity is lined with respiratory mucosa
 - Moistens air
 - Traps incoming foreign particles

Anatomy of the Nasal Cavity

- Lateral walls have projections called conchae
 - Increases surface area
 - Increases air turbulence within the nasal cavity
- The nasal cavity is separated from the oral cavity by the palate
 - Anterior hard palate (bone)
 - Posterior soft palate (muscle)

Paranasal Sinuses

- Cavities within bones surrounding the nasal cavity
 - Frontal bone
 - Sphenoid bone
 - Ethmoid bone
 - Maxillary bone

Paranasal Sinuses

Function of the sinuses

- Lighten the skull
- Act as resonance chambers for speech
- Produce mucus that drains into the nasal cavity

Pharynx (Throat)

- Muscular passage from nasal cavity to larynx
- Three regions of the pharynx
 - Nasopharynx superior region behind nasal cavity
 - Oropharynx middle region behind mouth
 - Laryngopharynx inferior region attached to larynx
- The oropharynx and laryngopharynx are common passageways for air and food

Upper Respiratory Tract

Structures of the Pharynx

- Auditory tubes enter the nasopharynx
- Tonsils of the pharynx
 - Pharyngeal tonsil (adenoids) in the nasopharynx
 - Palatine tonsils in the oropharynx
 - Lingual tonsils at the base of the tongue

Larynx (Voice Box)

- Routes air and food into proper channels
- Plays a role in speech
- Made of eight rigid hyaline cartilages and a spoon-shaped flap of elastic cartilage (epiglottis)

Structures of the Larynx

- Thyroid cartilage
 - Largest hyaline cartilage
 - Protrudes anteriorly (Adam's apple)
- Epiglottis
 - Superior opening of the larynx
 - Routes food to the larynx and air toward the trachea

Structures of the Larynx

Vocal cords (vocal folds)

 Vibrate with expelled air to create sound (speech)

Glottis – opening between vocal cords

Trachea (Windpipe)

- Connects larynx with bronchi
- Lined with ciliated mucosa
 - Beat continuously in the opposite direction of incoming air
 - Expel mucus loaded with dust and other debris away from lungs
- Walls are reinforced with C-shaped hyaline cartilage

Primary Bronchi

- Formed by division of the trachea
- Enters the lung at the hilus (medial depression)
- Right bronchus is wider, shorter, and straighter than left
- Bronchi subdivide into smaller and smaller branches

Lungs

- Occupy most of the thoracic cavity
 - Apex is near the clavicle (superior portion)
 - Base rests on the diaphragm (inferior portion)
 - Each lung is divided into lobes by fissures
 - Left lung two lobes
 - Right lung three lobes

Lungs

Figure 13.4b

Coverings of the Lungs

- Pulmonary (visceral) pleura covers the lung surface
- Parietal pleura lines the walls of the thoracic cavity
- Pleural fluid fills the area between layers of pleura to allow gliding

Respiratory Tree Divisions

- Primary bronchi
- Secondary bronchi
- Tertiary bronchi
- Bronchioli
- Terminal bronchioli

Bronchioles

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Slide

Bronchioles

Figure 13.5a

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Slide

Bronchioles

Respiratory Zone

Structures

- Respiratory bronchioli
- Alveolar duct
- Alveoli
- Site of gas exchange

Alveoli

- Structure of alveoli
 - Alveolar duct
 - Alveolar sac
 - Alveolus
 - Gas exchange

(a)

Respiratory Membrane (Air-Blood Barrier)

- Thin squamous epithelial layer lining alveolar walls
- Pulmonary capillaries cover external surfaces of alveoli

Respiratory Membrane (Air-Blood Barrier)

Slide

Gas Exchange

- Gas crosses the respiratory membrane by diffusion
 - Oxygen enters the blood
 - Carbon dioxide enters the alveoli
- Macrophages add protection
- Surfactant coats gas-exposed alveolar surfaces

Events of Respiration

- Pulmonary ventilation moving air in and out of the lungs
- External respiration gas exchange between pulmonary blood and alveoli

Events of Respiration

- Respiratory gas transport transport of oxygen and carbon dioxide via the bloodstream
- Internal respiration gas exchange between blood and tissue cells in systemic capillaries

Mechanics of Breathing (Pulmonary Ventilation)

- Completely mechanical process
- Depends on volume changes in the thoracic cavity
- Volume changes lead to pressure changes, which lead to the flow of gases to equalize pressure

Mechanics of Breathing (Pulmonary Ventilation)

- Two phases
 - Inspiration flow of air into lung
 - Expiration air leaving lung

Inspiration

- Diaphragm and intercostal muscles contract
- The size of the thoracic cavity increases
- External air is pulled into the lungs due to an increase in intrapulmonary volume

Inspiration

Changes in anterior-posterior and superior-inferior dimensions

Changes in lateral dimensions

Figure 13.7a

Exhalation

- Largely a passive process which depends on natural lung elasticity
- As muscles relax, air is pushed out of the lungs
- Forced expiration can occur mostly by contracting internal intercostal muscles to depress the rib cage

Exhalation

Figure 13.7b
Nonrespiratory Air Movements

- Can be caused by reflexes or voluntary actions
- Examples
 - Cough and sneeze clears lungs of debris
 - Laughing
 - Crying
 - Yawn

- Normal breathing moves about 500 ml of air with each breath (tidal volume [TV])
- Many factors that affect respiratory capacity
 - A person' s size
 - Sex
 - Age
 - Physical condition
- Residual volume of air after exhalation, about 1200 ml of air remains in the lungs

- Inspiratory reserve volume (IRV)
 - Amount of air that can be taken in forcibly over the tidal volume
 - Usually between 2100 and 3200 ml
- Expiratory reserve volume (ERV)
 - Amount of air that can be forcibly exhaled
 - Approximately 1200 ml

- Residual volume
 - Air remaining in lung after expiration
 - About 1200 ml

- Vital capacity
 - The total amount of exchangeable air
 - Vital capacity = TV + IRV + ERV
 - Dead space volume
 - Air that remains in conducting zone and never reaches alveoli
 - About 150 ml

- Functional volume
 - Air that actually reaches the respiratory zone
 - Usually about 350 ml
- Respiratory capacities are measured with a spirometer

Respiratory Capacities

Figure 13.9

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Slide

Respiratory Sounds

- Sounds are monitored with a stethoscope
- Bronchial sounds produced by air rushing through trachea and bronchi
- Vesicular breathing sounds soft sounds of air filling alveoli

External Respiration

Oxygen movement into the blood

- The alveoli always has more oxygen than the blood
- Oxygen moves by diffusion towards the area of lower concentration

Pulmonary capillary blood gains oxygen

External Respiration

- Carbon dioxide movement out of the blood
 - Blood returning from tissues has higher concentrations of carbon dioxide than air in the alveoli
 - Pulmonary capillary blood gives up carbon dioxide
- Blood leaving the lungs is oxygen-rich and carbon dioxide-poor

Gas Transport in the Blood

Oxygen transport in the blood

- Inside red blood cells attached to hemoglobin (oxyhemoglobin [HbO₂])
- A small amount is carried dissolved in the plasma

Gas Transport in the Blood

- Carbon dioxide transport in the blood
 - Most is transported in the plasma as bicarbonate ion (HCO₃⁻)
 - A small amount is carried inside red blood cells on hemoglobin, but at different binding sites than those of oxygen

Internal Respiration

- Exchange of gases between blood and body cells
- An opposite reaction to what occurs in the lungs
 - Carbon dioxide diffuses out of tissue to blood
 - Oxygen diffuses from blood into tissue

Internal Respiration

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Slide

External Respiration, Gas Transport, and Internal Respiration Summary

Neural Regulation of Respiration

- Activity of respiratory muscles is transmitted to the brain by the phrenic and intercostal nerves
- Neural centers that control rate and depth are located in the medulla
- The pons appears to smooth out respiratory rate
- Normal respiratory rate (eupnea) is 12–15 respirations per minute
- Hypernia is increased respiratory rate often due to extra oxygen needs

Neural Regulation of Respiration

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Slide 13 37

Factors Influencing Respiratory Rate and Depth

- Physical factors
 - Increased body temperature
 - Exercise
 - Talking
 - Coughing
- Volition (conscious control)
- Emotional factors

Factors Influencing Respiratory Rate and Depth

- Chemical factors
 - Carbon dioxide levels
 - Level of carbon dioxide in the blood is the main regulatory chemical for respiration
 - Increased carbon dioxide increases respiration
 - Changes in carbon dioxide act directly on the medulla oblongata

Factors Influencing Respiratory Rate and Depth

- Chemical factors (continued)
 - Oxygen levels
 - Changes in oxygen concentration in the blood are detected by chemoreceptors in the aorta and carotid artery

Information is sent to the medulla oblongata

Respiratory Disorders: Chronic Obstructive Pulmonary Disease (COPD)

- Exemplified by chronic bronchitis and emphysema
- Major causes of death and disability in the United States

Respiratory Disorders: Chronic Obstructive Pulmonary Disease (COPD)

Features of these diseases

- Patients almost always have a history of smoking
- Labored breathing (dyspnea) becomes progressively more severe
- Coughing and frequent pulmonary infections are common

Respiratory Disorders: Chronic Obstructive Pulmonary Disease (COPD)

- Features of these diseases (continued)
 - Most victimes retain carbon dioxide, are hypoxic and have respiratory acidosis
 - Those infected will ultimately develop respiratory failure

Emphysema

- Alveoli enlarge as adjacent chambers break through
- Chronic inflammation promotes lung fibrosis
- Airways collapse during expiration
- Patients use a large amount of energy to exhale
- Overinflation of the lungs leads to a permanently expanded barrel chest
- Cyanosis appears late in the disease

Chronic Bronchitis

- Mucosa of the lower respiratory passages becomes severely inflamed
- Mucus production increases
- Pooled mucus impairs ventilation and gas exchange
- Risk of lung infection increases
- Pneumonia is common
- Hypoxia and cyanosis occur early

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

13.13

Slide

Lung Cancer

- Accounts for 1/3 of all cancer deaths in the United States
- Increased incidence associated with smoking
- Three common types
 - Squamous cell carcinoma
 - Adenocarcinoma
 - Small cell carcinoma

Sudden Infant Death syndrome (SIDS)

- Apparently healthy infant stops breathing and dies during sleep
- Some cases are thought to be a problem of the neural respiratory control center
- One third of cases appear to be due to heart rhythm abnormalities

Asthma

- Chronic inflamed hypersensitive bronchiole passages
- Response to irritants with dyspnea, coughing, and wheezing

Developmental Aspects of the Respiratory System

- Lungs are filled with fluid in the fetus
- Lungs are not fully inflated with air until two weeks after birth
- Surfactant that lowers alveolar surface tension is not present until late in fetal development and may not be present in premature babies

Developmental Aspects of the Respiratory System

Important birth defects

 Cystic fibrosis – oversecretion of thick mucus clogs the respiratory system

Cleft palate

Aging Effects

- Elasticity of lungs decreases
- Vital capacity decreases
- Blood oxygen levels decrease
- Stimulating effects of carbon dioxide decreases
- More risks of respiratory tract infection

Respiratory Rate Changes Throughout Life

- Newborns 40 to 80 respirations per minute
- Infants 30 respirations per minute
- Age 5 25 respirations per minute
- Adults 12 to 18 respirations per minute
- Rate often increases somewhat with old age