

Excretion. Oral cavity as excretory organ

Prof. Zaporozhets T.Viber +380972420098

consists of the kidneys, ureters, urinary bladder and urethra

Kidney Structure

Functions of the Kidneys

5

 removal of metabolic wastes from the blood and excretion to the outside of the body

 regulation of red blood cell production, blood pressure, calcium ion absorption, and the volume, composition, and pH of the blood 6

Renal Blood Vessels

Structure of a Nephron

Nephron and Associated Blood Vessels

Juxtaglomerular Apparatus

Cortical and Juxtamedullary Nephrons

cortical nephrons
80% of nephrons
located close to the surface of the kidney
juxtamedullary nephrons
regulate water balance
located near the renal medulla

Blood Supply of Nephron

•The glomerular capillary receives blood from the afferent arteriole and passes it to the efferent arteriole

•The efferent arteriole gives rise to the peritubular system, which surrounds the tubule

•Capillary loops called vasa recta dip down into the medulla

Pathway of Blood Flow Through Kidney and Nephron

Urine Formation

 nephrons remove wastes from the blood and regulate water and electrolyte concentrations

- urine is the final product of the processes of:
 - glomerular filtration
 - tubular reabsorption
 - tubular secretion

Urine Formation

Glomerular Filtration

substances move from blood to glomerular capsule

Tubular Reabsorption

•substances move from renal tubules into blood of peritubular capillaries

- glucose, water, urea, proteins, creatine
- amino, lactic, citric, and uric acids
- phosphate, sulfate, calcium, potassium, and sodium ions

Tubular Secretion

- substances move from blood of peritubular capillaries into renal tubules
- drugs and ions

Glomerular Filtration

Glomerular Filtration

19

• The first step in urine formation is filtration of substances out of the glomerular capillaries into the glomerular capsule

•Glomerular filtrate passes through the fenestrae of the capillary endothelium

G Iomerular Filtrate and Urine Composition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 20.1 Relative Concentrations of Plasma, Glomerular Filtrate, and Urine Components

	Concentrations (mEq/L)		
Substance	Plasma	Glomerular Filtrate	Urine
Sodium (Na ⁺)	142	142	128
Potassium (K ⁺)	5	5	60
Calcium (Ca ⁺²)	4	4	5
Magnesium (Mg ⁺²)	3	3	15
Chloride (Cl⁻)	103	103	134
Bicarbonate (HCO3 ⁻)	27	27	14
Sulfate (SO ₄ ⁻²)	1	1	33
Phosphate (PO4 ⁻³)	2	2	40

(mEq/L (milliequivalents per liter) is a commonly used measure of concentration based on how many charges an ion carries. For a substance with a charge of 1, such as CI⁻, a mEq is equal to a millimole.)

	Concentrations (mg/100 mL)			
Substance	Plasma	Glomerular Filtrate	Urine	
Glucose	100	100	0	
Urea	26	26	1,820	
Uric acid	4	4	53	
Creatinine	1	1	196	

Filtration Pressure and Rate

Vet Filtration Pressure = force favoring filtration - forces opposing filtration (glomerular capillary (capsular hydrostatic pressure and glomerular capillary hydrostatic pressure) and glomerular capillary osmotic pressure)

Glømerular Filtration Rate

directly proportional to the net filtration pressure

Filtration Pressure and Rate

22

• normally the glomerular net filtration pressure is positive causing filtration

•the forces responsible include hydrostatic pressure and osmotic pressure of plasma and the hydrostatic pressure of the fluid in the glomerular capsule

Amounts of Glomerular Filtrate and Urine

average amounts over a 24 hour period

Control of Filtration Rate

•Primarily three mechanisms are responsible for keeping the GFR constant

> •Increased sympathetic impulses decrease GFR by causing afferent arterioles to constrict

• **R**enin-angiotensin system

Autoregulation

Tubular Reabsorption 25 transports substances from the glomerular filtrate into the blood within the peritubular capillary Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display Blood flow Afferent arteriole Glomerularcapsule Efferent arteriole Glomerulus Glomerularfiltrate Tubular-Peritubular reabsorption capillary Renaltubule

(a)

Blood flow

Sodium and Water Reabsorption

•osmosis reabsorbs water in response to active transport reabsorbing sodium and other solutes in the proximal portion of the renal tubule

Sodium and Water Filtration, Reabsorption, and Excretion

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 20.2	Average Values for Sodium and Water Filtration, Reabsorption, and Excretion			
	Amount Filtered per Day	Amount Reabsorbed per Day (%)	Amount Excreted per Day	
Water (L)	180	178 2 (99%)	18(1%)	

Water (L)	180	178.2 (99%)	1.8 (1%)	
Na* (g)	630	626.8 (99.5%)	3.2 (0.5%)	

•transports substances from the blood within the peritubular capillary into the renal tubule

Tubular Secretion

In distal convoluted tubules, potassium ions or hydrogen ions may be passively secreted in response to active reabsorption of sodium ions

Regulation of Urine Concentration and Volume

• the distal convoluted tubule and collecting duct are impermeable to water, so water may be excreted as dilute urine

•if ADH is present, these segments become permeable, and water is reabsorbed by osmosis into the hypertonic medullary interstitial fluid

The Countercurrent Multiplier

helps maintain the NaCl concentration gradient in the medullary interstitial fluid

Countercurrent Mechanism of Vasa Recta

fluid in ascending limb becomes hypotonic as solute is reabsorbed

•fluid in descending limb becomes hypertonic as it loses water by osmosis

Role of ADH in Regulating Urine Concentration and Volume

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 20.3Role of ADH in RegulatingUrine Concentration andVolume

- 1. Concentration of water in the blood decreases.
- Increase in the osmotic pressure of body fluids stimulates osmoreceptors in the hypothalamus.
- **3.** Hypothalamus signals the posterior pituitary gland to release ADH.
- 4. Blood carries ADH to the kidneys.
- ADH causes the distal convoluted tubules and collecting ducts to increase water reabsorption by osmosis.
- 6. Urine becomes more concentrated, and urine volume decreases.

Functions of Nephron

Copyright © The McGraw-Hill	Companies, Inc. Permission required for reproduction or display.
TABLE 20.4	Functions of Nephron Components
Part	Function
Renal Corpuscie	cause in the second second second
Glomerulus	Filtration of water and dissolved substances from the plasma
Glomerular capsule	Receives the glomerular filtrate
Renal Tubule	
Proximal convoluted tubule	Reabsorption of glucose; amino acids; creatine; lactic, citric, uric, and ascorbic acids; phosphate, sulfate, calcium, potassium, and sodium ions by active transport
	Reabsorption of proteins by endocytosis
	Reabsorption of water by osmosis
	Reabsorption of chloride ions and other negatively charged ions by electro- chemical attraction
	Active secretion of substances such as penicillin, histamine, creatinine, and hydrogen ions
Descending limb of nephron loop	Reabsorption of water by osmosis
Ascending limb of nephron loop	Reabsorption of sodium, potassium, and chloride ions by active transport
Distal convoluted tubule	Reabsorption of sodium ions by active transport
	Reabsorption of water by osmosis
	Active secretion of hydrogen ions
	Secretion of potassium ions both actively and by electrochemical attraction
Collecting Duct	Reabsorption of water by osmosis

(Note: Although the collecting duct is not anatomically part of the nephron, it is functionally connected.)

Urea and Uric Acid Excretion

Urea

 by-product of amino acid catabolism plasma concentration reflects the amount or protein in diet •enters renal tubules through glomerular filtration contributes to the reabsorption of water from the collecting duct

Uric Acid

 product of nucleic acid metabolism enters renal tubules through glomerular filtration most reabsorption occurs by active transport •~10% secreted and excreted

•tests of renal clearance used to calculate glomerular filtration rate

Elimination of Urine

- nephrons
- collecting ducts
- renal papillae
- minor and major calyces
- renal pelvis
- ureters
- urinary bladder
- urethra
- outside

- 25 cm long
 extend downward posterior
 to the parietal peritoneum
 parallel to vertebral
 column
- in pelvic cavity, join urinary bladder
- wall of ureter
 - mucous coat
 - muscular coat
 - fibrous coat

ight @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Urinary Bladder

40

 hollow, distensible, muscular organ located within the pelvic cavity, posterior to the symphysis pubis and inferior to the parietal peritoneum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Abdominal wall Ureter Parietal peritoneum Urinary bladder Symphysis pubis Prostate gland Rectum Rectum Urethra (a) (b)

Urinary Bladder

•the internal floor of the bladder includes a triangular area called the trigone which has an opening at each of three angles

Cross Section of Urethra

Copyright @The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Urethra

• tube that conveys urine from the urinary bladder to the outside of the body

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Micturition

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 20.5 Major Events of Micturition

- 1. Urinary bladder distends as it fills with urine.
- 2. Stretch receptors in the bladder wall are stimulated, and they signal the micturition center in the sacral spinal cord.
- 3. Parasympathetic nerve impulses travel to the detrusor muscle, which responds by contracting rhythmically.
- 4. The need to urinate is urgent.
- Voluntary contraction of the external urethral sphincter and inhibition of the micturition reflex by impulses from the brainstem and the cerebral cortex prevent urination.
- Following the decision to urinate, the external urethral sphincter is relaxed, and impulses from the pons and the hypothalamus facilitate the micturition reflex.
- 7. The detrusor muscle contracts, and urine is expelled through the urethra.
- 8. Neurons of the micturition reflex center fatigue, the detrusor muscle relaxes, and the bladder begins to fill with urine again.

- kidneys appear scarred and grainy
- kidney cells die
- by age 80, kidneys have lost a third of their mass
- kidney shrinkage due to loss of glomeruli
- proteinuria may develop
- renal tubules thicken
- harder for kidneys to clear certain substances
- bladder, ureters, and urethra lose elasticity
- bladder holds less urine

Clinical Application

Glomerulonephritis

- inflammation of glomeruli
- may be acute or chronic
- acute glomerulonephritis usually occurs as an immune reaction
 to a *Streptococcus* infection
- antigen-antibody complexes deposited in glomeruli and cause inflammation
- most patients recover from acute glomerulonephritis
 chronic glomerulonephritis is a progressive disease and often involves diseases other than that caused by *Streptococcus*
- renal failure may result from chronic glomerulonephritis